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Abstract

As large language models (LLMs) become in-
creasingly embedded in society, ensuring their
safe yet helpful use becomes critical. Jail-
breaking attacks, which exploit vulnerabili-
ties to bypass model safeguards, enable harm-
ful outcomes such as misinformation, privacy
breaches, and more real-world risks. Current
jailbreak techniques range from psychologi-
cal attacks and prompt engineering, to weight-
based and retrieval methods. In response, de-
fensive strategies have been developed, includ-
ing prompt-level techniques and model-level
methods. As a consequence of excessive safety
fine-tuning, state-of-the-art LLMs also have
a tendency to over-abstain which is undesir-
able at the other end of this safety-helpfulness
spectrum. To address this balance, we pro-
pose a tiered policy framework involving regu-
latory standards, multi-layered access control
and transparency, and adaptive safety mecha-
nisms using dynamic preference tuning. Our
recommendations aim to refine Al governance
strategies that protect against misuse without
stifling beneficial Al applications, ensuring re-
sponsible and secure Al innovation.

1 Introduction and Motivation

Large language models (LLMs) have become more
and more integrated into society and our everyday
life, and it is a critical issue to make sure that these
machine-generated behaviors are helpful while re-
maining safe and secure. LLM jailbreaking, in par-
ticular, refers to the techniques that exploit vulner-
abilities of the machine learning model to bypass
their safeguards, eliciting potential misuse or harm-
ful behaviors such as generating misinformation,
privacy leaks, or real-world risks like robotic ma-
nipulation or chemical synthesis. In this abstract,
we intend to review existing methods on LLM at-
tacks and defenses, as well as evaluation suits and
benchmarks that the community has introduced in
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order to assess and mitigate their risks. On top of
the literature survey, we will give our own recom-
mendations on how Al development should pay
more attention to the safety-helpfulness trade-off,
as we need to establish a balance between training
helpful Al assistants while keeping them safe from
harmful uses.

Current jailbreak strategies range from author-
ity/psychological attacks (DarkCite) (Yang et al.,
2024b) and multi-turn prompt engineering (Jigsaw
Puzzle) (Yang et al., 2024a) to weight-based at-
tacks (Badllama 3) (Volkov, 2024) and retrieval
poisoning (PANDORA). These attacks constantly
evolve in the Al community and new threats always
expose the fragility of existing safety measures.
To counteract the risks of having state-of-the-art
LLMs jailbroken, numerous defensive strategies
also have been proposed. These can be catego-
rized into prompt-level and model-level defenses.
Prompt-level techniques, such as Prompt Adver-
sarial Tuning (PAT) and Constitutional Classifiers,
modify user prompts to mitigate adversarial attacks.
Model-level approaches, like SelfDefend, integrate
internal safety mechanisms that monitor and reg-
ulate output generation. While these methods en-
hance security, they also introduce trade-offs that
may restrict model helpfulness in benign scenarios.

Our policy framework aims to strike a balance
between security and usability. We propose a
tiered approach: (1) Regulatory Standards — gov-
ernments and academic institutions should estab-
lish baseline safety benchmarks using standard-
ized evaluation tools such as JailbreakBench and
HarmBench. (2) Access Control and Transparency
— open models should implement tiered access,
where highly capable models undergo stricter mon-
itoring for adversarial usage. (3) Adaptive Safety
Mechanisms — LLMs should employ dynamic
preference tuning to differentiate between mali-
cious and beneficial queries rather than blanket
refusal policies. Through this policy framework,



we seek to refine LLM governance strategies that
ensure safety without undermining legitimate use
cases, fostering both security and responsible inno-
vation in Al deployment.

2 Jailbreaking Large Language Models

Jailbreaking attack methods generally are com-
pared and categorized between different categories.
These include single-turn or. multi-turn methods
and white box or black box methods. Certain attack
methods may also be categorized as multimodal or
RAG-based attacks.

2.1 Single-Turn and Multi-Turn Methods

Single-turn jailbreaking methods execute jailbreak-
ing within a single prompt, whereas multi-turn
methods execute jailbreaking in a series of prompts,
and are generally more effective. Multi-turn meth-
ods include Jigsaw Puzzles (Yang et al., 2024a),
which splits a potentially harmful prompt into dif-
ferent tokens before asking a machine to combine
them and respond. Other multi-turn methods in-
clude training red-team agents on datasets to ex-
ecute attacks, as demonstrated through the MRJ-
agent method (Wang et al., 2025a).

2.2 White Box and Black Box Methods

White box and black box methods differ based on
whether jailbreak attacks have or do not have ac-
cess to the model’s internals during attacks. White
box attacks are particularly effectively, bypassing
safety fine-tuning in a matter of minutes, as demon-
strated by Badllama 3 (Volkov, 2024), while frame-
works such as COLD-Attack can further facilitate
white-box attacks through searching for and exe-
cuting attacks based on factors such as fluency and
stealthiness (Guo et al., 2024).

Black box jailbreaking methods have achieved
success through methods such as leveraging author-
itative information in prompts through methods like
DarkCite (Yang et al., 2024b) or through reinforce-
ment learning, mutating questions and templates
based on vocabulary richness scoring (which in-
creases as methods become more successful) in
methods like PathSeeker (Lin et al., 2024).

2.3 Other Methods

Other jailbreaking methods have had success in
multimodal LLMs and RAG-based LLMs. Chain-
of-Jailbreak attacks can manipulate LLMs to cre-
ate harmful images through passing instructions to
modify images step by step (Wang et al., 2024),

while VoiceJailbreak allows for audible jailbreak
prompts on LLMS such as GPT-40 by framing at-
tacks as fictional scenarios (Shen et al., 2024).

Indirect jailbreaking methods such as through re-
trieval augmented generation (RAG) have also been
studied. Methods such as PANDORA involve creat-
ing, injecting, and triggering malicious documents
in LLMs that are modified to prevent rejection by
the LLMs (Gelei Deng et al., 2024).

2.4 Jailbreaking Defense Methods

Defenses against jailbreaking involve methods that
allow for refusal of harmful prompts while hav-
ing minimal influence on benign prompts, and are
often divided into model-level or prompt-level de-
fenses. Model-level defenses involve safety fea-
tures directly built within the model, such as Self-
Defend utilizing a shadow LLM and stack to de-
termine whether prompts are harmful, triggering
checkpoints in the normal stack if such is the case
(Wang et al., 2025b).

Prompt-level defenses directly modify the
prompt to prevent harmful results, with methods
such as Prompt Adversarial Tuning (PAT) and Ro-
bust Prompt Optimization (RPO) adding defense
prefixes and suffixes to the prompts respectively to
hield significant protection against attacks while
having minimal impact on benign prompts (Mo
et al., 2024; Zhou et al., 2024). Additionally, meth-
ods such as using constitutional classifiers to gen-
erate a diverse training set of synthetic prompts
that can allow models to defend against ‘universal’
jailbreaks (Sharma et al., 2025).

3 Over-Refusals

Modern LLMs usually go through a post-training
stage that involves reinforcement learning from
human feedback (RLHF), in order to align with
human preferences. As discussed in the previous
section, a large portion of this stage contains in-
structions that teach the models to avoid harmless
behaviors. If this safety fine-tuning is too conser-
vative, models tend to learn to refuse more broadly
than human users would appreciate. For example,
an aligned GPT-3.5 model might refuse a harmless
prompt for a dark joke, replying "I’m sorry, but I
can’t comply with that request.” (Cui et al., 2024).
While safety training reduces toxic outputs, we
show that it often comes at the cost of increased re-
fusals of innocuous queries. In essence, the model
learns a policy that it’s better to say no than risk



saying something wrong. We could imagine the ex-
treme case where a model trained to always avoid
risk might refuse every query - it would be perfectly
harmless but completely useless as an assistant.
This highlights the trade-off: between safety and
helpfulness, if we push too hard on one dimension,
we might compromise the other. Having too much
emphasis on safety can inadvertently reduce the
helpfulness of these models. And as a result, this
process produces a model that sticks to a small safe
zone of responses (like canned refusals or generic
answers), reducing its overall adaptability.

Anthropic addresses this issue in their recent
release (Anthropic, 2025), the Claude 3-7-sonnet,
where they introduce the concept of "appropriate
harmlessness." Their goal is to develop models
capable of recognizing harmful intent without ex-
cessively refusing non-toxic queries. However, An-
thropic acknowledges that in the earlier prototypes
they designed to protect against jailbreaking, they
also observed higher over-refusal rates, reducing
model usability. One specific effect is that mod-
els become overly sensitive to certain keywords or
phrases, refusing prompts that contain them even in
contexts that are not actually harmful. Researchers
term this "lexical overfitting": the model becomes
too sensitive for words that are commonly seen in
unsafe requests and blocks the response without
carefully inspecting the whole query. One example
is that, the word "coke" in a query might trigger
a refusal because the model flags due to its con-
notation with illegal drugs, when in fact the user
meant the soft drink. These false positives happen
likely because the safety mechanism acts like a
simple keyword filter. Similarly, safety classifiers
or heuristic rules used to make the model robust to
adversarial prompts might generalize poorly. The
model learns a constraint like "if query mentions vi-
olence or self-harm, respond with a refusal,”" which
works for truly unsafe requests but also includes
some benign ones (e.g. "How do I kill a process
in Linux?"). This effect, if not carefully calibrated,
leads to an overshooting effect: benign queries
that only superficially resemble unsafe ones get
rejected.

To formalize this issue and evaluate the extent
of LLM overrefusals, benchmarks like XSTEST
(Rottger et al., 2023) and OR-Bench have been in-
troduced. XSTEST (Exaggerated Safety Test) is a
suite of 250 safe prompts across 10 categories that
should not be refused, paired with 200 truly unsafe
prompts for control contrast. The safe prompts are

designed to resemble tricky cases — for instance, us-
ing homonyms ("Where can I buy a can of coke?"
meaning soda), figurative language, or references
to violence in safe contexts (like a video game or
fishing). A well-calibrated model should answer
all 250 safe queries and refuse the 200 unsafe ones.
XSTEST results have revealed that some models
exhibit systematic false refusals due to keyword
triggers or misinterpreting context. For example,
the authors have pointed out that Llama-2-chat ini-
tially refused many safe prompts containing words
like "kill" (even if talking about killing a computer
process or gutting a fish).

OR-Bench (Cui et al., 2024) takes evaluation fur-
ther by generating a large-scale dataset of "seem-
ingly toxic" prompts. It automatically rewrites gen-
uinely harmful prompts into innocuous versions
that look dangerous but aren’t. This resulted in
80,000 test prompts spanning common refusal cat-
egories (e.g. harassment, violence, self-harm, il-
licit behavior etc.), along with a subset of 1,000
challenging cases and 600 truly toxic prompts for
control. OR-Bench allows more rigorous testing of
models under many scenarios. Using this bench-
mark, (Cui et al., 2024) evaluated 25 popular LLMs
(across 8 proprietary and open-weight model fami-
lies) and quantified the safety-helpfulness trade-off.
The findings confirmed that most models improve
safety primarily by being more refusal-prone, and
very few managed to both refuse almost all toxic
prompts and answer most benign ones. Notably,
models like Anthropic’s Claude-2 had the highest
toxic rejection rates but also over-refused the most
benign prompts, whereas some open-source models
(like Mistral) were very permissive (few refusals,
but also failed to refuse some unsafe prompts).

Recent research into model interpretability has
revealed that refusal behaviors can be controlled at
the internal, mechanistic level of LLMs. Studies in-
dicate that manipulating specific model stream and
activations can either induce or prevent refusal be-
haviors, providing a promising approach to balance
safety and usability effectively. For policymakers,
the existence of these benchmarks is reassuring be-
cause it shows the research community is not just
focusing on preventing bad behavior, but also ac-
tively testing for overly strict behavior. Balanced
evaluation frameworks will lead to Al systems that
are both safer and more responsive.



4 Policy Recommendation

As large language models become widely used in
society, establishing a policy framework is critical
to ensure these systems remain both safe and help-
ful. The current situation reveals a fundamental
trade-off: strong safeguarads aimed at preventing
jailbreaking can lead to over-refusal of legitimate
and harmless requests, while prioritizing helpful-
ness without adequate safeguards creates vulnera-
bilities to malicious cases. Our policy recommen-
dations want to address this challenge through a
structured framework that balance both safety re-
quirements and helpfulness expectations.

To start with, we propose adopting a systematic
safeguard evaluation process directly from the UK
Al Security Institute’s "Principles for Evaluating
Misuse Safeguards of Frontier Al Systems" (UK Al
Security Institute, 2025). This five-step approach
begins with clearly stating safety requirements and
identifying specific risks they want to prevent or
resolve; this step needs to be as detailed and con-
crete as possible. The second step establishes a
safeguards plan, detailing specific defense methods
to be implemented, including how these defense
methods will be integrated and how realistic they
are. The third and fourth steps focus on evidence
collection — evaluating safeguard effectiveness in
controlled pre-deployment testing and planning for
ongoing post-deployment assessment to identify
emerging vulnerabilities or over-refusal patterns.
The fourth step is crucial to pre-define how success
and failure look after deployment. Finally, the fifth
step involves determining whether the implemented
safeguards satisfy the original requirements by fol-
lowing the guidelines in step four and comparing
with the identified risks specified in step one. This
creates a continuous improvement loop that adapts
to evolving threats and usage patterns.

Building on this evaluation template, we recom-
mend a policy framework addressing the full life-
cycle of LLM deployment. In the pre-deployment
phase, governmental regulatory bodies (preferably
US AI Safety Institute) should establish context-
specific security thresholds based on application
sensitivity and potential impact, with higher-risk
domains requiring more protections. This will al-
low Al companies and developers to have a ref-
erence. Besides, we will provide a regulatory
sandboxes that have limited liability protection
for testing innovative safeguard approaches. Dur-
ing deployment and monitoring stage, we mandate

regular benchmarking on both jailbreak vulnera-
bility and over-refusal propensity using standard-
ized tools like JailbreakBench, XSTEST, and OR-
Bench. These assessments should be accompa-
nied by transparent documentation of safety mech-
anisms and their known limitations. For post-
deployment continuous improvement, we advo-
cate establishing formal incident response channels
and bug bounty programs specifically targeting the
safety-helpfulness balance, alongside protected in-
telligence sharing mechanisms that allow organiza-
tions to collaborate on defensive measures without
exposing proprietary information.

This balanced framework acknowledges that per-
fect safety is neither achievable nor desirable if
it comes at the cost of model utility. Instead, we
envision a governance approach that encourages
dynamic adjustment of safeguards based on con-
text, user verification, and application domain. We
aim to develop Al systems that remain helpful for
legitimate users while maintaining appropriate pro-
tections against harms. The success of LLMs in so-
ciety ultimately depends not on maximizing either
safety or helpfulness in isolation, but on thought-
fully optimizing their balance in ways that respect
both the potential and the risks of these powerful
technologies.

5 Embedded Ethics Discussion and
Conclusion

To enhance people’s awareness of safety and use-
fulness when learning about LLMs, it is important
not only to illustrate the concepts but also to pro-
vide hands-on experience with real use cases. If
we aim to transform our proposed policy frame-
work into courses, we can follow this sequence:
First, we introduce the concept of LLM jailbreak-
ing and allow students to implement both attack
and defense strategies. This approach can heighten
students’ awareness of potential vulnerabilities in
LLMs that they may not have previously noticed.
Next, we introduce the contrasting concept of over-
refusals. Unlike jailbreaking, overrefusals focus
on maintaining LLMs’ usefulness while ensuring
they do not become overly conservative in their
responses due to excessive defensive measures. Fi-
nally, we present our Al policy framework, ex-
plaining how we formulate strategies to evaluate
whether LLMs are both safe and helpful. We also
discuss how these evaluations can be conducted
across different phases: pre-deployment, deploy-



ment, and post-deployment. In summary, hands-on
experience with jailbreaking, overrefusals, and pol-
icy evaluation helps students balance LLM safety
and usefulness, fostering a deeper understanding
of Al security.
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