
CS 263: Advanced NLP — Midterm Review Sheet

1. Word Representations
• Distributional Hypothesis (Harris, 1954): Words in sim-
ilar contexts have similar meanings.

• Static Word embeddings (word2vec, GloVe): Dense vec-
tors pre-trained on co-occurrence stats. Problem: context-
free — “bank” gets same vector regardless of meaning.

• Contextualized representations: Transformer models
produce embeddings that change with context, handling pol-
ysemy (e.g., “bank” in finance vs. river).

• Byte Pair Encoding: Learn subword vocabulary; split rare
words into components. Common words stay whole; rare
words decomposed. Solves OOV (out-of-vocabulary) / UNK
problem of word-level models.

2. Attention Mechanism
(Bahdanau et al., 2015)
• Dot product: a(q, k) = qTk

• Scaled dot product: a(q, k) = qTk√
|k|

(stabilizes gradients)

• Benefits: Better use of input; helps address long-range
dependencies and vanishing gradient (shortcut to faraway
states); provides some degree of interpretability/alignment.

3. Transformers
(Vaswani et al., 2017)
• Key insight: No recurrence – relies (almost) entirely on
attention; easier to parallelize. You should familiarize
yourself with the self-attention computation from the Illus-
trated Transformer blog (https://jalammar.github.io/
illustrated-transformer/).

• Positional Encoding: Since no recurrence, position info
added via sinusoidal functions.

4. Transformer Components
• Residual Connections: LayerNorm(x+Sublayer(x)) —
prevents information loss through layers.

• Layer Normalization: LayerNorm(x) = γ ⊙ x−µ√
σ2+ϵ

+ β,

helps to stabilize training
• GPT block components: Masked Multi-Head Self-
Attention, LayerNorm + Residual, Feed Forward

5. LLM Pre-training
• Labeled data is scarce; unlabeled text is abundant (web-
scale).

• Self-supervised objectives (masking, next-token predic-
tion) require no manual labels.

• Chinchilla Scaling Law (Hoffmann et al., 2022): For
compute-optimal training, scale model size and training data
proportionately.

6. Pre-training Architectures

1. Unidirectional / Decoder-Only (GPT)
• Left-to-right; causal/masked self-attention (can only at-
tend to past tokens). Suited for generation.

2. Bidirectional / Encoder-Only (BERT)
• Attends to both left and right context. Suited for classi-
fication/understanding.

3. Encoder-Decoder (T5)
• Encoder processes corrupted input; decoder generates miss-
ing spans. Combines benefits of both.

7. In-Context Learning & Prompting
• Zero-shot: Task description only; no examples. No gradient
updates.

• Few-shot: Task description + few examples in context. No
gradient updates. Performance improves more rapidly with
model size.

8. LLM Post-training
• Supervised Finetuning (SFT) is used before RLHF/DPO
to teach the model expected output format via examples.
Learning format from reward signals alone is inefficient.

• RLHF / DPO then refines outputs for desired qualities
(helpfulness, harmlessness).

• PEFT: Freeze most parameters; update only a small subset
for each downstream task.

9. Basic Decoding Strategies

1. Greedy Decoding
• Select highest-probability token at each step: yj =
argmax P (yj |X, y1, . . . , yj−1)

• Pros: Fast, deterministic
• Cons: Ignores long-tail; generic/repetitive outputs; locally
optimal ̸= globally optimal

2. Ancestral Sampling
• Sample randomly: yj ∼ P (yj |X, y1, . . . , yj−1)
• Can produce very improbable/incoherent sequences

3. Top-k Sampling
• Restrict to top k most probable tokens, renormalize, then
sample

• Fixed k can be too narrow (peaked dist.) or too broad (flat
dist.)

4. Nucleus / Top-p Sampling
• Sample from smallest token set whose cumulative probability
≥ p

• Adaptive: includes fewer tokens when distribution is
peaked, more when flat

• Addresses top-k’s fixed-size limitation

5. Temperature Scaling

pi =
exp(zi/T)∑
j exp(zj/T)

, T > 0

• Low T (e.g., 0.2): Peaky distribution → more determinis-
tic, conservative

• T = 1: Original distribution (no change)
• High T (e.g., 1.5+): Flatter distribution → more ran-
dom/creative

• T → 0: equivalent to greedy; T → ∞: uniform distribution
• Can combine with top-k/top-p

10. Beam Search
• Idea: Explore multiple partial sequences (breadth-first) be-
fore committing

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

• Algorithm: (1) Set beam width k; (2) Start with top-k
tokens; (3) Expand each beam by top-k continuations (k2

candidates); (4) Prune to top-k by cumulative log-prob; (5)
Repeat until EOS

• Length normalization: Divide log-prob by sequence
length (avoids bias toward short sequences)

• Pros: Better coherence/overall quality than greedy
• Cons: Computationally expensive; outputs can be very sim-
ilar; large beam width can degrade quality (Cohen & Beck,
2019)

Diverse Beam Search
• Split beams into groups; group 1 expands normally; subse-
quent groups penalize similarity to prior groups

Stochastic Beam Search (Kool et al., 2019)
• Add Gumbel noise to logits: Xi = zi + Gi, Gi ∼
Gumbel(0, 1)

• Select top-k of perturbed values⇒ sampling without replace-
ment

• P (Xi = max) = exp(µi)∑
j exp(µj)

(softmax!)

11. Test-Time Scaling
• Test-time scaling: Improve performance via extra infer-
ence compute (more tokens) rather than retraining

• Chain-of-Thought (Wei et al., 2022): Few-shot exam-
ples with intermediate reasoning steps ⇒ large gains

• Zero-Shot CoT (Kojima et al., 2022): Simply append
“Let’s think step by step” – no task-specific examples needed

12. Classification Metrics
• Accuracy = TP+TN

TP+TN+FP+FN

• Precision = TP
TP+FP (of predicted positives, how many

correct?)
• Recall = TP

TP+FN (of actual positives, how many found?)

• F1 = 2× Precision×Recall
Precision+Recall (harmonic mean)

13. Open-Ended Generation Metrics

N-gram Based (Reference-Based)
• BLEU, ROUGE, METEOR: Measure lexical similarity
(n-gram overlap) between generated and gold-standard text.
Fast but lack semantic understanding.

Model-Based (Reference-Based)
E.g.
• BERTScore (Zhang et al., 2020)
• BLEURT (Sellam et al., 2020)
Crowdsourced references may be uncorrelated with faithfulness;
expert references yield better correlation with actual quality.

LLM-as-a-Judge (Reference-Free)
• Use a strong LLM to score/compare outputs. No human
reference needed. Increasingly popular.

• Self-bias: LLMs prefer their own outputs. Self-preference
correlates linearly with self-recognition capability (Pan-
ickssery et al., 2024).

14. Human Evaluation (Gold Stan-
dard)
• Most important form of evaluation for text generation; used
to validate automatic metrics.

• Dimensions: fluency, coherence/consistency, factuality,
commonsense, style/formality, grammaticality, redundancy.

• Used in both model training (e.g., Anthropic RLHF with
crowdworkers) and model evaluation (e.g., BIG-bench).

Inter-Annotator Agreement (IAA)

• Cohen’s Kappa (2 annotators): κ = Pr(a)−Pr(e)
1−Pr(e)

Pr(a) = observed agreement; Pr(e) = expected (chance)
agreement. Computed from marginal label distributions.

• Fleiss’ Kappa: Generalizes Cohen’s κ for n > 2 annotators.
• Krippendorff’s Alpha: Most robust; handles missing
data.

• Interpretation (Landis & Koch): 0–0.2 slight, 0.2–0.4 fair,
0.4–0.6 moderate, 0.6–0.8 substantial, 0.8–1.0 perfect.

• Low IAA can signal annotator error, bad protocol, or gen-
uine task subjectivity.

Quality Issues in Human Eval
• Order bias: Randomize question/example positions.
• Inattentive annotators: Use attention checks.
• Spamming: Time checks, consistency checks, free-text
quality.

• Reproducibility: Human eval is not reliably reproducible;
experts vs. crowdworkers give very different scores. Report
minimum details (participants, preparation, task construc-
tion, annotations, IAA).

15. Benchmarking Ecosystem
• Static vs Dynamic Benchmarking
• Monoculture problem: Most papers evaluate only on En-
glish + accuracy; neglect multilinguality, fairness, efficiency,
interpretability.

• Prevention of Test Set Contamination: Models may be
trained on test data. Hard to verify for closed models. Some
workarounds are private test sets (limit access) and dynamic
test sets (e.g. DynaBench — continuously create new adver-
sarial examples).

